
Kubernetes
and CI/CD
Containerization of Continuous Integration and Continuous Delivery

BROUGHT TO YOU IN PARTNERSHIP WITH

PAGE 2DZONE TREND REPORT: KUBERNETES AND CI/CD

Table of Contents

3
4
8

10
16
17

23

Highlights & Introduction
BY ANDRE LEE-MOYE

Key Research Findings
BY THE EDITORIAL TEAM

Time Series Applied to CI/CD Pipeline Optimization
BY DANIELLA PONTES

Where Kubernetes Is Headed in the Next Five Years
BY STEFAN THORPE

Building a Development Ready Kubernetes Platform
BY ANITA BUEHRLE

Effective Kubernetes Deployment Is More Than
Choosing a CI/CD Product
BY BOB RESELMAN

Diving Deeper Into Kubernetes and CI/CD

To sponsor a Trend Report:

Call: (919) 678-0300

Email: sales@devada.com

mailto:sales%40devada.com?subject=

PAGE 3DZONE TREND REPORT: KUBERNETES AND CI/CD

Continuous integration and continuous delivery (CI/CD) have been synonymous with DevOps process transformations since the

first efforts to condense the overall release pipeline. Continuous integration design practices result in software that is modular and

can be repeatedly integrated with other components into a single source, while continuous delivery ensures that software is pro-

duction-ready at all times. Together, CI/CD processes fulfill the promises of DevOps to create shorter time-to-market cycles, tighter

feedback loops, and deployable products that can be updated in minutes instead of weeks.

There were few initial indications that container orchestration tool Kubernetes would become as widely adopted as it is. However,

as an open source product with the veritable backing of Google’s resources and community, Kubernetes entered the market as an

easily accessible and authoritative tool. Since that introduction a mere five years ago, in 2014, Kubernetes has become a staple in

the infrastructures of startups and top tech companies, as either a vanilla configuration or at the foundation of the managed con-

tainer solutions of other cloud vendors.

The rise of Kubernetes came at a fortuitous time for organizations grappling with DevOps transformations and enterprise-wide CI/

CD optimization, and the once-groundbreaking tool is now commonplace across the CI/CD lifecycle. In light of the prominence and

growing necessity of Kubernetes in any discussion of CI/CD processes, we examine the present and future state of both Kuberne-

tes and CI/CD individually, and together as cooperative and opposing entities.

The consideration of Kubernetes as an individual tool is seen within “Where Kubernetes Is Headed in the Next Five Years,” as author

Stefan Thorpe ponders how Kubernetes will be implemented in the near future. After a brief reflection of the meteoric rise of Kuber-

netes as the premier container orchestrator, Thorpe explains the continuing role of Kubernetes in creating common planes for both

development and operations. He then explores its development as a more secure, full infrastructure management tool.

Bob Reselman’s “Effective Kubernetes Deployment is More Than Choosing a CI/CD Product” details the stages of an effective CI/

CD process as defined by the Build, Release, Run principle from the 12 Factor Application Methodology. Part of an overall warning

against using Kubernetes as a panacea for a full CI/CD pipeline, Reselman notes how automation helps free developers from the

more mundane tasks. With respect to the Dev/Prod Parity, he concludes by examining the hidden and clear dangers present in

following an incomplete process.

Findings from our survey of software developers, engineers, and architects provide insight into the current state and future of

Kubernetes and CI/CD, aligning closely with the predictions introduced in what follows.

Highlights & Introduction
By Andre Lee-Moye, Content Coordinator at DZone

ORIGINAL RESEARCH

PAGE 4DZONE TREND REPORT: KUBERNETES AND CI/CD

Working in a continuous integration and continuous delivery (CI/CD)

environment is typically a major goal of DevOps teams. To package

applications and products throughout the DevOps lifecycle, many teams

are turning to containers. According to the DZone 2019 DevOps survey,

half of all software organizations globally have an official, specified

DevOps function. Repondents report the role of these teams is to “help

the organization adopt the best continuous delivery tools” (70%), “intro-

duce automation across the SDLC” (68%), “increase collaboration and

break down silos between Dev and Ops” (56%), “develop and deliver

software across the entire stack (54%). Given the broad mandate for

DevOps, it’s not surprising to find an increasing interest in all aspects of

the approach.

Container orchestration tools such as Kubernetes allow DevOps teams to manage these containers, leading to faster deployments

and shorter time to market, while also satisfying heightened customer expectations and remaining competitive. To better under-

stand the industry’s perspective on Kubernetes and CI/CD, we conducted a survey among DZone’s global audience.

Adoption of Kubernetes

Three quarters (73.4%) of the companies represented in our

survey are currently using Kubernetes, and most of them

are recent converts to the use of the container-orchestration

system. Only 21.6% have used Kubernetes for three years or

more. The other 51.8% have adopted it in the past year.

We expect this trend to continue increasing. According to our

research, another 15.8% of companies have plans to adopt

Kubernetes in the next year. Only 11.5% said they have no

plans to use Kubernetes. Kubernetes adoption is relatively

consistent across the three regions of the world: APAC (74%),

EMEA (73.7%), and NA (72.5%).

Key Research Findings

By the Editorial Team, DZone

ORIGINAL RESEARCH

TREND PREDICTIONS

	▶ Kubernetes will continue to dominate as

the most popular tool for deploying and

managing containerized applications.

	▶ Increasing adoption of Kubernetes will

accelerate organizational productivity,

growth, and scalability.

	▶ More than two-thirds of organizations will

achieve both continuous integration and

continuous delivery in the near future.

No plans to

Next year

Yes, 1-2 years

Yes, 3+ years

51.8%

21.6%

15.1%

11.5%

Figure 1: Does your organization use Kubernetes?

PAGE 5DZONE TREND REPORT: KUBERNETES AND CI/CD

What does vary, however, is how recently companies

have adopted the system.

Over one-quarter of developers (27.1%) from APAC

report that their company has been using Kubernetes

for three or more years versus 19.4% in EMEA and

21.5% in NA. Only 15.7% of those in NA say that they

have no plans to adopt Kubernetes.

Environments for Kubernetes Use

Kubernetes is not limited to a single environment.

The majority of users employ Kubernetes in:

•	 Production/deployment (82.0%).

•	 QA/testing (81.2%).

•	 Development (80.1%).

•	 Staging (73.5%).

Most companies (53.5%) use Kubernetes in all four environments. 21.1% use it in three of four, 13.5% use it in two of four, and 11.9%

use it in only one. Those who use it in only one environment typically use it in production/deployment (56%).

The development environment comes in second place with 30.6%,

QA/testing comes in third with 11.1%, and only 2.8% use Kubernetes

exclusively in their staging environment.

While Kubernetes may not be used across the entire software devel-

opment lifecycle, those using Kubernetes (90.8%) say they use it in a

DevOps environment.

Globally, deploying code to production more often

falls to the development team (44.2%) instead of the

operations team (34.1%).

However, the global totals mask differences by

region. In EMEA, the job is executed by development

teams most often (49.3%), while in APAC, operations

teams are responsible for deploying code (44.9%).

In NA, operations and development teams share

more equal responsibility for deploying code.

Globally, release engineers are responsible less than

20% of the time. In NA, that’s more frequent (27.1%)

than in any other region. The QA team rarely manag-

es that task in any region.

0

10%

20%

30%

40%

50%

60%

No plans toNext yearYes, 1-2 yearsYes, 3+ years

NAEMEAAPAC

27.1%

46.9%

17.7%

8.3%

19.4%

54.3%

14.0%
12.4%

21.5%

51.0%

11.8%
15.7%

Figure 2: Kubernetes Use by Region

TOTAL APAC EMEA NA

YES 90.8% 87.3% 92.0% 91.9%

NO 9.2% 12.7% 8.0% 8.1%

Table 1: Does your organization use
Kubernetes in a DevOps environment?

0

20%

40%

60%

80%

100%

Release EngineersQAOperationsDevelopment

NAEMEAAPAC

36.2%

44.9%

2.9%

15.9%

49.3%

33.8%

0.7%

16.2%

35.7%

35.7%

1.4%

27.1%

Figure 3: Regional difference in who deploys code

PAGE 6DZONE TREND REPORT: KUBERNETES AND CI/CD

Benefits and Challenges of Kubernetes

Our developer audience tells us there are many reasons to

adopt Kubernetes. The most cited reason for adoption is

scalability (81.8%). Since scalability is crucial to a firm’s ability

to grow at a pace that maximizes performance and productiv-

ity, it’s no surprise that many identify it as a major benefit of

Kubernetes.

Surveyees selected several challenges of using containers:

•	 Lack of developer experience with containers (60.6%).

•	 Refactoring/rearchitecting legacy applications (48.7%).

•	 Application performance monitoring (42.5%).

•	 Monitoring (39.2%).

•	 Ensuring application and network security (35.7%).

•	 Storage scaling (30.7%).

A large majority of respondents say Kubernetes makes it much

easier to employ containers, though Kubernetes doesn’t help

with the lack of developer experience with containers.

While some developers believe it does lessen the burden (21.8%), more believe it makes the situation harder (33.1%). Overwhelm-

ingly, developers who use Kubernetes think that it makes working with containers easier (77.4%).

Continuous Integration and Continuous Delivery

In the past year, there have been enormous gains in achieving continuous integration and continuous delivery in the pipeline.

Continuous integration achievement leads continuous delivery, but the gap may be somewhat surprising.

This year, just over half (51.2%) report that they

have achieved continuous integration, up from

30.6% only 12 months ago.

Continuous delivery has shown similar gains with

29.3% reporting it has been achieved — up from

only 13.9% one year ago — and an even greater

proportion expect to hit the mark soon.

Not only is the CI/CD pipeline becoming a reality

in an increasing number of organizations, those

not at that stage expect to be there soon, 31% for

continuous integration and 42.9% for continuous

delivery at.

These projections suggest that 80% of compa-

nies will achieve continuous integration and 70%

continuous delivery.

Scalability 81.8%

Works well with our CI/CD pipelines 65.3%

Fault tolerant 59.9%

Efficient resource management 58.5%

Open source 58.3%

Efficient application updates 56.9%

Multiple workload and deployment options 50.1%

Integration with major cloud providers 48.0%

Extensibility 40.1%

Good ecosystem of supporting tools 36.9%

Large user community for support 35.0%

Built-in security 25.2%

Works well with our PaaS 20.6%

Flat networking model 13.6%

Table 2: Reasons for adopting Kubernetes

0

10%

20%

30%

40%

50%

60%

CDCI

No, more work to doNo, but soonYes

51.2%

29.3%
31.0%

42.9%

17.7%

27.8%

Figure 4: Many more expect to achieve CI/CD soon

PAGE 7DZONE TREND REPORT: KUBERNETES AND CI/CD

Conclusion

The container revolution is moving quickly. The majority of technology organizations have embraced Kubernetes for container

orchestration, most often within a DevOps environment. Achieving continuous integration and continuous delivery are on their

way to becoming commonplace as well.

This suggests that most developers are now able to focus on individual layers in the technology stack and not on the entire infra-

structure. Using Kubernetes helps developers better manage the increasing complexity, enabling organizations to scale for growth

more easily. Combining the container orchestration system with a CI/CD pipeline provides more frequent software releases with

improved quality, making both customers and developers happier.

Methodology

DZone conducted a quantitative survey among its global audience of developers, architects, and software engineers during

November of 2019. Results from 415 respondents informed the report.

PAGE 8DZONE TREND REPORT: KUBERNETES AND CI/CD

Time Series Applied
to CI/CD Pipeline
Optimization
By Daniella Pontes, Sr. Product Marketing Manager at InfluxData

CI/CD, which stands for continuous integration and continuous delivery — and can also encompass the concept of continuous

deployment — is at the heart of DevOps culture. By embracing the power of small, frequent code integrations with testing and

workflow automation, organizations have managed to keep up with time-to-market pressure and user demand for better and

faster applications and services.

Nonetheless, much more can still be achieved through holistic observation of the entire lifecycle of software releases. Organiza-

tions will not only gain further agility but also the confidence in meeting business needs and customer satisfaction in an optimal

and consistent manner.

CI/CD monitoring — extended with enriched observation data — generates more insightful indicators derived from additional

contextual and correlated information. By tapping into this rich data, each release cycle contributes to a better understanding of

critical areas of code change and their impact coverage, thereby allowing continuous process improvement and optimization.

Furthermore, holistic observation and historic data analysis produce simple and low-hanging benefits to automation. Outcomes

include identification of error-prone points; the reach of impact of changes on certain functions and UI aspects; better categori-

zation of issues aligned with appropriate alerting and actions; adaptive workflow automation based on well-understood trigger-

ing events; and much more, since time series provides a limitless source of extracted value.

In summary, a lot can be learned from taking release cycle monitoring a step forward by sending a rich set of observed data to

a time series platform, in which such diverse types of data (numeric and non-numeric) can be stored long term and subjected to

advanced analytics. Why not bring together metrics, logs, events, true/false outputs, errors, environment exceptions, RUM, and

synthetic user monitoring to one place to visualize data from multiple perspectives?

With such an exploratory platform, monitoring testing results to review frequency of success and failures could, for instance,

provide important feedback to the planning phase of a code change. Moreover, observing application quality and performance

at various stages; keeping records of environment errors, events, and exception handling; and tracking the impact of changes

on users all lead to the ultimate goal of achieving more mature practices — and consequently — safer and smoother continuous

integration, delivery, and deployment of application software.

SPONSOR OPINION

https://www.influxdata.com/products/influxdb-cloud/

PAGE 9DZONE TREND REPORT: KUBERNETES AND CI/CD

SPONSOR OPINION

A Customer Case Study:
Playtech
By Chris Churilo, Director of Product Marketing at InfluxData

The nature of Playtech’s operations — involving financial transactions in highly

regulated markets — demanded high-level monitoring. High-level monitoring of their

distributed system required analyzing financial data, which is time series data.

The architecture of the system is service oriented, the components have complex

business logic, and there are different backend variants for different B2B clients

(companies). As a result, Playtech achieved these tangible results:

•	 Detect service-start problems earlier because they see activities that are

critical — and have special rules for that — begin to degrade (some services

didn’t start well previously when they made a deployment and had some

mistakes in their configuration). Playtech can quickly catch numbers of

incidents within a week, enabling very quick response.

•	 The system combines monitoring and alerting for business indicators (BIs)

and Key Performance Indicators (KPIs) using the regularity of economical

processes. This takes them beyond monitoring to observability for a deeper

understanding of system behavior and causes, relationships between system

components, and needed action.

“Why InfluxDB? For Playtech, it was very
important to have observability, to understand
system behavior to predict possible outages
and problems in the very early stages.”

Aleksandr Tavgen, Technical Architect at Playtech

Product
InfluxDB

Real-time visibility into
stacks, sensors and systems

Category
Time Series Data Platform

Release Schedule
Quarterly release cycles

Open Source
Yes

Strengths
•	 Built for developers

•	 Trusted by Ops

•	 Vital to business

Notable Users
•	 Capital One

•	 PayPal

•	 Comcast

•	 Wayfair

•	 Optum Health

influxdata.com

influxdata.com/blog

@InfluxDB

https://www.influxdata.com/
https://www.influxdata.com/blog/
https://twitter.com/influxdb

PAGE 10DZONE TREND REPORT: KUBERNETES AND CI/CD

This article considers the future of Kubernetes and how the platform will evolve over the next five years. We examine:

•	 How Kubernetes originated and its soaring rise in popularity.

•	 The closer unification of infrastructure and application code.

•	 The current integration of core functions to improve the management of integral ops components.

•	 Early manifestations of a future Kubernetes platform-as-code functionality.

Blink, and you could miss it. Kubernetes’ exponential growth to de facto choice for container orchestration has made it the fastest

growing open source project in history. The foundation of Kubernetes is the orchestration and management of Linux containers to

establish powerfully distributed systems for deploying multiple applications on hybrid cloud environments.

It’s rise to the #1 super platform is scarcely credible — especially given that it essentially started as a homebrew project inspired

by the best elements of Google’s internal cluster management system, Borg, back in 2014.

Historical Development and Rise in Popularity

Given its start in life, predicting the future of such a popular platform could be deemed futile, but factoring in Kubernetes’ unprec-

edented support and huge technological patronage are what make the exercise interesting, to say the least. Never before has a

lone open source project attracted such support, input, and collaboration from the software industry.

As well as making managing containerized workloads portable and extensible, Kubernetes’ prestige lies in its customization capa-

bilities and that it facilitates both declarative configuration and automation. These are all reasons why nowadays, no one is going

to lose points for leveraging Kubernetes as their container orchestrator of choice for building for applications.

Its popularity is the reason it didn’t exactly take long for the major public clouds to launch their own Kubernetes-based platforms

(AKS, GKE, and EKS). And the on-premise guys weren’t far behind with platforms based on Kubernetes as well (Openshift, Pivotal

Container Service, etc.).

More and more PaaS systems are evolving into Platform-as-Code in Kubernetes. Inspired by trailblazers in Infrastructure-as-Code,

such as AWS Cloud Formation and Terraform, these ‘Platform-as-Code in Kubernetes tools’ are highlighting the future of Kuberne-

tes, which is slowly moving infrastructure code and application code closer and closer together.

OPINION

Where Kubernetes
Is Headed in the
Next Five Years
By Stefan Thorpe, Head of DevOps and Security at Cherre and CTO at Caylent

PAGE 11DZONE TREND REPORT: KUBERNETES AND CI/CD

Kubernetes Helps Dev and Ops Teams Optimize Workflows

Traditionally, development and operations within the development pipeline comprise two very distinct skill sets: x and x. Over the

last few years, two tooling approaches have formed. One set, which broadly covers PaaS, considers the end-to-end developer

workflow while trying to remove any need for Ops engineers. The other set, generally covering Infrastructure-as-Code, examines

ops difficulties in provisioning infrastructure through automation. Communication issues and technical incidents tend to occur in

teams of dev and ops together over a lack of common tooling.

In more recent times — and with the increasing adoption of the DevOps methodology — ops teams have caught up with code

automation, and devs are taking on more ops responsibilities to improve the seamless collaboration of workflow between the two

departments. With the unification of infrastructure and application code in Platform-as-Code, there is a potential to overcome

these issues with kubectl and Kubernetes YAML as the common language and tool for devs and ops working together. Optimiz-

ing development and operations together in an ‘as-Code’ approach leverages repeatability, collaboration, version control, and

improved resource management across corresponding dev and ops elements.

Kubernetes Operators are already a hugely significant working element in the application build process. Designed to deliver

automated application lifecycle management, Kubernetes Operators free devs up from having to deal with the time-consuming

and complex nuts and bolts of deploying, scaling, reconfiguring, and upgrading applications. The future is not too far off from

a time when Kubernetes Operators will be leveraged to manage not just the application lifecycle, but to include the underlying

server, network, and storage infrastructure as well.

The Not-so-Distant Future of Kubernetes

The next five years will see more teams leveraging platform-level functionality in an ‘as Code’ manner. Kubernetes will further

enable us to describe an application and platform dependencies in a high-level, declarative representation, while at the same time

supporting the deployment of the application stack in a repeatable manner via this description.

Early manifestations of this future Kubernetes platform-as-code functionality are indicated in the current integration of core

processes in Kube, which make it easier to manage integral ops components. If you leverage platform elements such as Custom

Resources in your application YAMLs with native Kubernetes resources like ConfigMap, Deployment, and Service, then you are

already essentially customizing a platform for your YAML application code.

Just as when working with Helm and Kubernetes Secrets, we’re managing infrastructure code next to application code in a

repeatable, shareable manner.

CONTINUED GROWTH TOWARD GREATER ACCESSIBILIT Y

Over the next five years, I believe we’ll see the transition become more seamless as infrastructure and application code get even

closer together in an ‘as Code’ approach, especially since Kubernetes is designed extensively to optimize configurability and flexi-

bility. What this means at the moment is that there are hundreds of potential approaches for deploying a Kubernetes cluster.

Currently, Kubernetes is simple enough to set up; there is well-documented tooling and a solid do-it-yourself guide to follow.

However, it becomes more complex to manage in production long-term without experience. I think the future will see the Kube

community and vendor army focus on ease of use to support this transition and make adoptability much easier.

Kubernetes’ move from container orchestration to full infrastructure management is all but on the cards already. In an attempt to

avoid lock-in with any one vendor or provider, users already optimize Kubernetes as a common abstraction layer for applications

that run over physical, virtual, private, and public cloud environments.

PAGE 12DZONE TREND REPORT: KUBERNETES AND CI/CD

The future will see users being able to leverage Kubernetes to manage converged workloads on third-party clouds, while retaining

the freedom to deploy, run, and manage applications on their cloud of choice without requiring admins and devs to learn multiple

APIs and environments. Kube will allow users to combine and manage compute, storage, and networking in a single framework in

one location.

EVOLVING METHODS FOR SECURIT Y INTEGRATION

Not to deviate too far from the main pathway of this article, but I believe another major aspect of Kubernetes that will see

significant change over the next five years is security. Within Kubernetes, the whole method of security integration still confuses

users. Even over the next 6-12 months, I believe we’ll see more collaboration and input from the vendor army in the form of tools to

improve this process as well as service offerings from within the Kube community.

Kubernetes and Future Innovation

Despite Kubernetes having been around for several years now, there seems to be no indication of a change in its upward trajec-

tory for future innovation. And it seems like there’s no stopping Kubernetes dominating the future of infrastructure and application

management through Platform-as-Code. Looking ahead over the next five years, I foresee the merging of these two trends playing

a significant role in the software development world and for enterprise customers.

Ahoy, Kommander.

Deliver federated management and governance
across disparate clusters for any on-premise or

cloud Kubernetes distribution.

Ensure smooth sailing for
Kubernetes with D2iQ

Learn More →

Consolidated Multi-Cluster Governance

Simplified Operational Management

Greater Management Flexibility

Delivering Centralized Governance

KEY BENEFITS

https://d2iq.com/resources/solution-brief/kommander-enterprise-kubernetes-cluster-governance-and-control?utm_source=dzone&utm_medium=syndication&utm_content=global&utm_term=7013Z000002gYQo&utm_campaign=19-11-25-solution-briefs-Kommander-Enterprise-Kubernetes

PAGE 14DZONE TREND REPORT: KUBERNETES AND CI/CD

Developed to address the broad issues caused by Kubernetes

cluster sprawl, D2iQ’s Kommander delivers federal management,

governance, and visibility across an organization’s expansive use

of Kubernetes clusters.

As various parts of the organization require new Kubernetes

clusters and associated data services, Kommander simplifies the

provisioning of new services and creates greater policy-driven

consistency across Kubernetes clusters within the environment.

This capability allows for greater standardization of Kubernetes

to ensure an easier support path for application services.

Further, this level of broad control can help organizations meet

risk and compliance demands as they govern how and where

new application services are used, as well as who is able to en-

gage in policy and operational needs of those services.

Key Benefits:

•	 Governance and policy administration – Centrally govern clusters and create lines of

 separation across various projects.

•	 Reduced complexity – Create greater configuration consistency across organizational clusters.

•	 Unified infrastructure – Deliver multi-cloud and hybrid experiences across a myriad of

 Kubernetes distributions.

Introducing Kommander
By Rahul Dabke, Director of Product Marketing and Analyst Relations at D2iQ

SPONSOR OPINION

TREND PREDICTIONS

	▶ Kubernetes cloud-native cluster sprawl will

continue exploding.

	▶ Cluster sizes will continue to grow,

necessitating simplified management.

	▶ Security and governance requirements will

drive enterprise IT Policy.

	▶ Best-in-class offerings for cloud-native

technologies will emerge.

	▶ Infrastructure and operations will need tools

that automate orchestration and observability.

PAGE 15DZONE TREND REPORT: KUBERNETES AND CI/CD

Get Started

https://www.weave.works/kubernetes-quickstart/?utm_source=dzone&utm_medium=text_ad&utm_campaign=k8trend

PAGE 16DZONE TREND REPORT: KUBERNETES AND CI/CD

Congratulations on starting your cloud-native journey. Your team has chosen the leading development and deployment framework

that provides application portability, agility, and scalability. You began your journey with containers and now you’re ready to deploy

your container-based application at scale with Kubernetes. But at this point, you’re faced with a bewildering array of software ven-

dors, cloud providers, and open source projects that all promise painless, successful Kubernetes deployments.

How do you decide where to go from here? The key to success is a flexible and reproducible cloud-native platform that allows you to

quickly adopt these new technologies in your infrastructure and to run workloads anywhere: on premise, in public clouds, or even in a

hybrid-cloud environment.

“Cloud-native applications increase business agility and speed. But this requires a new runtime platform and environment

for operating cloud-native applications reliably, securely, and at scale.” Steve George, COO Weaveworks

Weaveworks Enterprise Kubernetes Platform reduces this complexity through automated configuration management and operations

tooling. With GitOps configuration management, teams can define a standard installation of Kubernetes and automate the deploy-

ment of new nodes following standard templates. Preconfigured cluster templates let developers and operators define apps and

update clusters add-ons with security patches, minimizing the YAML mess.

GitOps Configuration Management Automation

With GitOps at the center of your operational model, application developers and cluster operators can spin up and manage produc-

tion ready Kubernetes across environments with ease. GitOps can initiate a cluster patch or a minor version upgrade or add and

remove cluster nodes all without having to rebuild your entire cluster from the ground up.

When your entire cluster configuration is stored in Git and managed with GitOps, you can reproduce the cluster in a repeatable and

predictable way. This brings advantages when you are building test environments and pipelines, and producing clusters for different

teams with the same base configuration, or improving your disaster recovery capability.

Weaveworks Enterprise Kubernetes Platform

Increase application delivery at enterprise scale. Reduce the time, effort, and errors to create, update, and manage production ready

clusters. Preconfigured dashboards allow you to understand clusters, verify and correct updates, and alert on incorrect states.

Find out more about the Enterprise Kubernetes Platform.

Building a Development-
Ready Kubernetes
Platform
By Anita Buehrle, Senior Content Lead at Weaveworks

SPONSOR OPINION

https://www.weave.works/product/enterprise-kubernetes-platform/?utm_source=dzone&utm_medium=editorial_ad&utm_campaign=k8trend

PAGE 17DZONE TREND REPORT: KUBERNETES AND CI/CD

If your company’s software stack runs under Kubernetes, an automated

continuous integration/continuous deployment (CI/CD) pipeline is not a

way to go — it’s the only way to go. There’s no way any group of people

can manually support the hundreds, if not thousands, of active API

resources that make up the typical Kubernetes cluster.

The need for CI/CD is apparent, not only for production release but for

all steps that come before it, from dependency management to unit and

performance testing at scale.

Yet many companies make the mistake of thinking that establishing an effective CI/CD process requires nothing more than

choosing the right product with the right feature set that matches the technology stack for a given enterprise. While such criteria

are reasonable, they put the cart before the horse.

The difficulty with CD is that it’s process-intensive, particularly for a Kubernetes environment, and a fragmented deployment

process is counter-productive to continuous deployment. Continuous deployment requires a release process that is uniform for all

version releases all the time.

Without such uniformity, companies cannot release code at the velocities needed in today’s business world. Thus, it’s no surprise

that many companies are reporting an inability to achieve effective CD. Process counts, particularly when it comes to supporting

CI/CD under Kubernetes. The good news is that there’s no need to reinvent the wheel. The principles for an effective CI/CD were

laid out a while ago in the 12 Factor App Methodology.

As time has shown, companies that follow these principles

have a better chance of realizing an effective CI/CD than

those that take a tools-centric approach. In this article,

we’ll look at two key principles of the Methodology that

have particular applications to any CI/CD process: Build,

Release, Run and Dev/Prod Parity.

Effective Kubernetes
Deployment Is More
Than Choosing a CI/CD
Product
By Bob Reselman, Principal at CogArtTech

OPINION

TREND PREDICTIONS

In 2020, we can expect organizations to:

	▶ Streamline deployment processes.

	▶ Forego custom deployment processes.

	▶ Adopt continuous delivery tools and

frameworks.

A fragmented deployment
process is counter-productive
to continuous deployment

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.14/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.14/
https://12factor.net/

PAGE 18DZONE TREND REPORT: KUBERNETES AND CI/CD

The Elegance and Benefit of Build, Release, Run

One essential principle of the 12 Factor App Methodology is “Build, Release, Run,” which divides the deployment process into six

steps that take place throughout all phases of the SDLC.

PHASE ONE: BUILD

In the Build phase, a CI/CD management tool such as Jenkins, Travis CI, or Team City does an automated code checkout from a

source control management repository that’s shared by all teams involved in the development effort. The code is converted into

one, or even many, deployment artifacts (see Figure 1, callouts 1 and 2, below).

Examples of deployment artifacts include a Docker container, a .NET DLL, or a Java jar file. Once the deployment artifact is creat-

ed, it’s stored in an artifact repository such as Docker Hub, NuGet, MVNRepository, or any of the multitude of artifact repositories

available. Both the deployment artifact(s) and artifact repository depend on the programming language(s) and software develop-

ment framework(s) supported by the enterprise.

PHASE TWO: RELEASE

Following the Build phase, during Release, the CI/CD tool aligns the release’s configuration information with the artifacts relevant

to a particular release (see Figure 1, callouts 3 and 4, above.) Typically, the configuration information for a release is stored in the

common source control management system.

Example: Let’s say a particular deployment is updating a feature in an application named MyService. The update to

MyService would use a Docker container image named MyImage:1.1.1, for which MyImage is the image name and 1.1.1

is a tag that describes the version number relevant to the release. The image is stored in Docker Hub.

The CI/CD management system checks out a configuration template that is stored in the source control management system

(e.g., a Kubernetes manifest file). The CI/CD management system adjusts the configuration settings in the template to align with

deployment artifact versions relevant to the release. The next step is to promote the configuration and its artifacts into a runtime

environment, which is performed during the Run phase.

Figure 1: The Build, Release, Run process ensures reliable deployment of software independent of tool choice.

https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://en.wikipedia.org/wiki/JAR_(file_format)
https://hub.docker.com/
https://www.nuget.org/
https://mvnrepository.com/
https://docs.docker.com/engine/reference/commandline/images/
https://hub.docker.com/
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#organizing-resource-configurations

PAGE 19DZONE TREND REPORT: KUBERNETES AND CI/CD

PHASE THREE: RUN

Two steps occur during the run phase. First, the CI/CD Manager uses provisioning tools to create the actual runtime environ-

ment. The CI/CD Manager can use an infrastructure management tool such as Terraform to create a set of virtual machines in

the cloud. Then they can use another configuration tool, Ansible, for example, to install the necessary runtime binaries.

If the intended runtime environment is a Kubernetes cluster, Ansible will do the work of installing the binaries and setting up the

cluster (see Figure 1, callout 5, above).

If the runtime environment exists already, this step is skipped. The CI/CD Manager moves on to the next step, installing the new

artifacts into the runtime environment according to the configuration information relevant to the particular release. Typically, this

involves applying information in a configuration file, such as a Kubernetes manifest or a Puppet configuration file.

Usually, a configuration file references the required deployment artifacts according to the network location of the artifact

repository — either on the internet or in a private network. Then these artifacts are downloaded automatically from the network

into the physical runtime environment (see Figure 1, callout 6, above).

The Benefits of Build, Release, Run

Build, Release, Run is an automated process that ensures a high degree of reliability in terms of deployment consistency. It

also provides an ongoing audit trail for the entire process, documenting what, where, and when each step occurred during the

deployment process.

Humans are wonderfully creative and typically error prone. Thus, the best Kubernetes deployment processes are those that rely

upon human ingenuity to design the process and machine automation to execute the multitude of redundant tasks that cannot

tolerate mistakes in command line entries.

Automating deployment using the Build, Release, Run principle allows development teams to focus on designing a robust de-

ployment process while leaving the grunt work to machine automation. This means no more weekends in the war room trying to

fix problems created in a manual deployment process that was initiated by others.

Build, Release, Run saves time and money, provided the process is followed beyond a single deployment path, as detailed by the

Dev/Prod Parity principle within the 12 Factor App Methodology.

Using Dev/Prod Parity to Avoid CI/CD Disasters

Although Build, Release, Run provides a high degree of consistency and efficiency in the deployment process, hazards can still

exist if the process does not follow the Dev/Prod Parity principle closely.

When releasing software deployment versions, Dev/Prod Parity maintains that the automation scripts must follow the same

deployment process and that the target of the deployment must be known and distinct.

The best Kubernetes deployment processes are
those that rely upon human ingenuity to design
the process and machine automation to execute it

https://www.terraform.io/
https://en.wikipedia.org/wiki/Ansible_(software)
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/
https://puppet.com/

PAGE 20DZONE TREND REPORT: KUBERNETES AND CI/CD

Example: Below, Figure 2 shows the Build, Release, Run principle applied to two target Kubernetes environments — DEV and

PROD. In the scenario above, PROD is running version 1.1 of a particular application. DEV is running version 1.2.

Once DEV version 1.2 is production-ready, escalating it into PROD only requires following the Build, Release, Run process again.

This time, however, the process is targeting version 1.2 in the PROD environment. The version 1.2 configuration settings and arti-

facts in DEV should not be directly transferred into PROD. There must be parity in the escalation process. First target DEV. Then if

all is well in DEV, run the process again but this time target PROD.

Following the same deployment process to a distinct target ensures consistent determination of the artifact(s) version used. It also

provides a clear audit trail for the events in the escalation process. When you “jump” a release from DEV to PROD, you’re losing

visibility. You’re hoping things work out for the best. Needless to say, hoping a piece of software works in production is not a good

way to do business.

The Future of Kubernetes Deployments

Tools are important, no doubt, but they are only as good as the processes in which they’re used. Adopting a process-first ap-

proach is a significant milestone in modern Kubernetes development. The ephemeral nature of Kubernetes requires that CI/CD

processes must be predictable and easy to manage, otherwise even the simplest change in the system runs the risk of creating a

significant roadblock at runtime.

As we look to the future, we’re very likely to see more companies forgo custom deployment processes and closely adopt Build,

Release, Run and Dev/Prod Parity. Companies such as AWS, Google and Heroku, which are giants in the Kubernetes cloud native

space, have led the way. And others will follow.

Following the deployment practices described in Build, Release, Run and Dev/Prod Parity will no longer be a nice thing to do. It

will become essential practice for the health and wellbeing of the modern enterprise.

Figure 2: TheDev/Prod Parity principle dictates a consistent deployment path to a distinct target.

PAGE 21DZONE TREND REPORT: KUBERNETES AND CI/CD

CloudBees built Jenkins X, an open source CI/CD offering, solely on top of Kubernetes. Why did we limit ourselves to a single

platform? Why do we need Kubernetes, and why does Kubernetes need Jenkins X?

CloudBees wanted to build a new CI/CD platform to meet today’s challenges. It needed to be easy to use, scalable and fault

tolerant. Building such a platform can take years, unless we take advantage of things that are already out there. One of those

things is Kubernetes. It is a platform that provides all the building blocks needed to build a platform.

The Kubernetes “mission” is not to be an end-user tool. Instead, it is a platform designed for developers to build platforms. It

allows developers to focus on what matters (functionality), while providing required features that are not differentiators. Being

fault-tolerant, highly-available and scalable are not what differentiates one solution from another; they are the expected norm,

today. Yet building those features is a daunting and time-consuming endeavor. That’s where Kubernetes shines. It solves this and

many other needs, allowing software companies to focus on functionality — their true differentiation.

Kubernetes is much more complex to understand and operate than any other traditional platform. That, by itself, scares many

people. The time needed to learn basic Kubernetes is huge — and that is only the beginning. Users also need to figure out the

ecosystem that surrounds it. We need to pick the right tools. We need to assemble them into a meaningful platform that fulfills our

needs.

How will we build container images? How will we package and deploy applications? Where will we store the information about the

cluster and the environments?

These are many questions that each of us must ask, and trying to answer each of them quickly leads to a myriad of solutions,

without obvious answers.

That’s where Jenkins X comes in. It simplifies the choices. It provides opinions based on the collective experience of the DevOps

community. Jenkins X guides users through the maze of the Kubernetes ecosystem. It provides a solution for managing all the

steps in the CI/CD application lifecycle. It makes Kubernetes boring (i.e., easy) instead of overwhelming. It makes Kubernetes

useful for all, no matter how deeply (or not) developers understand the intricacies of the new cloud native ecosystem.

Jenkins X needed Kubernetes so that the community could focus on solving new problems. Kubernetes needs Jenkins X to guide

people through the complexities of its ecosystem.

How Jenkins X Makes K8s
More Valuable
Viktor Farcic, Developer Advocate at CloudBees

SPONSOR OPINION

PAGE 22DZONE TREND REPORT: KUBERNETES AND CI/CD

Kubernetes and cloud native development simplified.

Your ideas are going to change the world. Nothing can stand in the way of your turning code and
ideas into an impactful, finished application. Not even the complexity that accompanies the brave
new world of cloud native app development.

CloudBees helps you leverage the power of Kubernetes for end-to-end application development.
We bring order to cloud native chaos by uniting the silos of information and automation, and helping
you scale CI/CD, DevOps and Software Delivery Management across your entire enterprise software
portfolio, from mainframe to traditional to next-generation cloud native applications. We’ll manage
the CI/CD automation for you, so you can get busy building stuff that matters.

Develop cloud native apps with the offering that best fits your needs:

CloudBees Core
Fully-featured CI/CD for traditional and modern applications.
Built on Kubernetes to scale from small groups to multi-national
corporations. Try it for free.

CloudBees CI/CD powered by Jenkins X
For rapidly building and deploying cloud native applications to
Kubernetes. Hosted by CloudBees and powered by Jenkins X.
Learn more and join the Preview Experience.

CloudBees Jenkins X Distribution
For building cloud native applications, when open source satisfies
the need. Sign up to get the battle-tested distribution of Jenkins X
from CloudBees!

Build stuff that matters.

CloudBees, Inc.
125 South Market Street

Suite 400
San Jose, CA 95113

www.cloudbees.com
info@cloudbees.com

The registered trademark Jenkins® is used pursuant to a sublicense from the Jenkins project.
Read more at: www.cloudbees.com/jenkins/what-is-jenkins

© 2019 CloudBees, Inc. CloudBees and CloudBees DevOptics are registered trademarks and CloudBees Core, CloudBees Flow,
CloudBees Accelerator, CloudBees CodeShip, CloudBees Jenkins Enterprise, CloudBees Jenkins Platform and DEV@cloud are trademarks
of CloudBees. Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.canvasdiscount.com/3fcff?utm_source=copylink&utm_campaign=3fc&utm_medium=link
https://www.cloudbees.com/products/core/overview
https://www.cloudbees.com/products/cloudbees-ci-cd/overview
https://www.cloudbees.com/products/cloudbees-jenkins-x-distribution/overview
https://www.cloudbees.com/jenkins/what-is-jenkins

PAGE 23DZONE TREND REPORT: KUBERNETES AND CI/CD

Diving Deeper Into
Kubernetes and CI/CD

Zones
Cloud The Cloud Zone covers the host of providers and utilities

that make cloud computing possible and push the limits (and

savings) with which we can deploy, store, and host applications

in a flexible manner. This Zone focuses on PaaS, infrastructures,

containerization, security, scalability, and hosting servers.

Integration The Integration Zone focuses on communication

architectures, message brokers, enterprise applications, ESBs,

integration protocols, web services, service-oriented architecture

(SOA), message-oriented middleware (MOM), and API

management.

Open Source The Open Source Zone offers practical advice

about transitioning from closed to open projects, creating enforce-

able codes of conduct, and making your first OSS contributions. This

Zone encourages you to adopt an open-source mentality and shape

the way open collaboration works.

DevOps DevOps is a cultural movement, supported by exciting

new tools, that aims to encourage close cooperation within cross-

disciplinary teams of developers and IT operations. This Zone is your

hot spot for news and resources about continuous delivery, Puppet,

Chef, Jenkins, and more.

Refcards
Monitoring Kubernetes This Refcard

outlines common challenges in monitoring Kubernetes,

detailing the core components of the monitoring tool

Prometheus.

Advanced Kubernetes This Refcard aims to

deliver quickly accessible information for operators using

any Kubernetes product.

Securing Your Kubernetes
Deployment This Refcard will teach you the

essentials of security in Kubernetes, addressing topics like

container network access, user authorization, service token

Podcasts
PodCTL Produced by Red Hat OpenShift, this podcast covers

everything related to enterprise Kubernetes and OpenShift, from

in-depth discussions on Operators to conference recaps.

Deloitte on Cloud This episode of the Deloitte on Cloud

podcast dives into a few ways that organizations can use Kubernetes

to standardize processes around cloud migration.

Kubernetes Podcast from Google Considering

that Google produces it (and that Google also created Kubernetes

in 2014), you might call this podcast a classic. Enjoy weekly

interviews with prominent tech folks who work with K8s.

Books
Cloud Native DevOps
With Kubernetes
Learn how the Kubernetes

ecosystem can help you create

reliable applications with scalable

infrastructure.

Mastering Kubernetes
This book covers concepts like the

advantages and disadvantages

of running K8s on various cloud

providers versus bare metal,

monitoring and troubleshooting

clusters, and customizing K8s.

The Kubernetes Book
Get a thorough introduction to

Kubernetes, starting from the

basics. This book is one of the most

popular guides to Kubernetes for

beginners.

http://dzone.com/cloud
https://dzone.com/enterprise-integration-training-tools-news
https://dzone.com/open-source-news-tutorials-tools
http://dzone.com/devops
https://dzone.com/refcardz/monitoring-kubernetes?chapter=1
https://dzone.com/refcardz/advanced-kubernetes?chapter=1
https://dzone.com/refcardz/kubernetes-security-1?chapter=1
https://dzone.com/refcardz/kubernetes-security-1?chapter=1
https://podcasts.apple.com/us/podcast/podctl-kubernetes-and-cloud-native/id1270983443
https://www2.deloitte.com/us/en/pages/consulting/articles/for-cloud-professionals-john-arundel-justin-domingus-containers-kubernetes-devops-cloud-native-migration.html
https://kubernetespodcast.com/
https://www.amazon.com/Cloud-Native-DevOps-Kubernetes-Applications/dp/1492040762
https://www.amazon.com/Cloud-Native-DevOps-Kubernetes-Applications/dp/1492040762
https://books.google.com/books/about/Mastering_Kubernetes.html?id=nPBZDwAAQBAJ&source=kp_book_description
https://www.amazon.com/dp/1788999789/

PAGE 24DZONE TREND REPORT: KUBERNETES AND CI/CD PAGE 33DZONE TREND REPORT: KUBERNETES IN THE ENTERPRISE

CASE STUDIESTUTORIALS CODE SNIPPETSBEST PRACTICES

Visit the Zone

INTRODUCING THE

Keep a pulse on the industry with topics such as:

• Testing with containers

• Container performance monitoring

• Keeping containers simple

• Deploying containers in your organization

Container technologies have exploded in popularity, leading to diverse use cases

and new and unexpected challenges. Developers are seeking best practices for

container performance monitoring, data security, and more.

Cloud Zone

http://dzone.com/cloud

